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Generalized dynamical thermostating technique
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We demonstrate that the Noseethod for constant-temperature molecular-dynamics simulflitimh Phys.
52, 255(1984)] can be substantially generalized by the addition of auxiliary variables to encompass an infinite
variety of Hamiltonian thermostats. Such thermostats can be used to enhance ergodicity in systems, such as the
one-dimensional harmonic oscillator or certain molecular systems, for which the standartidimses meth-
ods fail to reproduce converged canonical distributions. In this respect the method is similar in spirit to the
method of NoSeHoover chains, but is both more general and Hamiltonian in strucinech allows for the
use of efficient symplectic integration schemes particular, we show that, within the generalized Nose
formalism outlined herein, any Hamiltonian system can be thermostated with any other, including a copy of
itself. This gives one an enormous flexibility in choosing the form of the thermostating bath. Numerical
experiments are included in which a harmonic oscillator is thermostated with a collection of noninteracting
harmonic oscillators as well as by a soft billiard system.
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[. INTRODUCTION shown to yield superior long term stabilif$], and the de-
sign of algorithms for this system has focused on the devel-
The use of extended dynamical systems to generate trapment of time-reversible metho@4]. In an alternative ap-
jectories with phase points distributed according to a canoniproach[5,6], a Poincargime transformation is applied to the
cal (isothermal distribution, as opposed to the micro- NoseHamiltonian, yielding a new Hamiltonian, which gen-
canonical(isoenergetit distribution generated by traditional erates canonically distributed dynamics directly in real time.
Hamiltonian dynamics, has become standard in molecularAlthough the exact phase-space trajectories for the Nose
dynamics simulation. Of the available approaches, thoséloover and Nosé®oincaremethods can easily be shown to
based on the extended Hamiltonian of Name the most be identical, the NosPoincaredynamics is Hamiltonian, al-
widely used. In this method, the Hamiltonian of the system idowing for the design oBymplecti¢ctime-reversible approxi-
augmented by the addition of auxiliary dynamical variablesmate integratorgs,7]. More recently, an alternative symplec-
so that constant-energy dynamics in the extended phadi& thermostating scheme has been proposed based on a
space generates a canonical distribution in the reduced phaggformulation of Noselynamics in a separated for(with a
space of the original system, assuming ergodicity. Althougrconstant mass matpixincorporating an on-the-fly recovery
this method is popular, it exhibits limitations when applied toof phase variables at fixed time steps through interpolation or
large scale systems with complex chemical structure, such asweighting[8].
protein-bath models and quantum-classical systems for In all of these methods, the production of canonically dis-
which a variety of dynamical components are present in théributed phase-space trajectories requires the system to be
solution. These limitations are a direct result of the simplicitysufficiently ergodic so that time and ensemble averages are
of the Nosemethod(which is also one of its most desirable equal within required accuracy. For the strongly coupled,
feature and they are only partly ameliorated by the intro- many-particle systems generally encountered in molecular
duction of various devices such as Namins. In this paper, simulation, the dynamics is often sufficiently chaotic for this
we show how Nose approach can be generalized to incor- condition to be met. However, for certain important low-
porate a wide range of bath systems, offering many interesdimensional systeméuch as the one-dimensiondlD) os-
ing avenues for improved dynamic sampling. We also demeillators [9]) or for many-particle systems with weakly
onstrate the construction of efficient numerical methods forcoupled low-dimensional subspadesich as molecular sys-
this system. tems with stiff intramolecular vibrationgl0]), the addition
Following the original papers of Nogé,2], many modi-  of only two auxiliary Nosevariables is not enough to yield
fications of the basic formulation have been proposed. Nossufficiently ergodic phase-space trajectories. To remedy this,
dynamics accomplishes thermostating by a dyna@icl ar- a number of methods have been proposed that either modify
tificial) modification of the time scale. In R€f3], time and  the coupling of the auxiliary variables in the Neleover
coordinate transformations are introduced to correct thequations of statgll-14 or add additional auxiliary vari-
time-scale problem; the resulting Nes®over dynamics is ables, as in the method of the Neldeover chaing15]. For
non-Hamiltonian, although a conserved energy function doea molecular system with periodic boundary conditions, the
exist. The lack of Hamiltonian structure precludes the use ofatter approach has proved to be the more generally useful
symplectic numerical integration schemes, which have beeane. All of these methods to enhance ergodicity, such as the
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NoseHoover approach from which they derive, are non-the Nosethermostat, is obtained by applying a time transfor-
Hamiltonian in structure and cannot take advantage of symmation directly to the Nos&lamiltonian as opposed to the

plectic integration schemes.
In this paper, we outline a general method for improving
the ergodicity of the Nosé¢hermostat that is fully Hamil-

tonian in structure. The method is generated by the introduc-

tion of additional auxiliary variables to the Ne®wincare
thermostat, in much the same way as the Ndsever
chains are generated from the Ndseover equations of mo-
tion. However, instead of specifically adopting a chainlike
coupling for this extended NogRoincareHamiltonian, we
determine a general form for the coupling, from which an

infinite variety of specific methods can be extracted. This
general form is presented in Sec. lll, following a background

discussion of the mathematical formulation of Ndsz&sed
thermostats in Sec. Il. In Sec. 1V, specific examples of Gen
eralized NosePoincarethermostats are introduced and ana-
lyzed with numerical experiments.

Il. BACKGROUND: THE NOSE AND NOSE-POINCARE
HAMILTONIANS

For a system ofN particles ind dimensions, the original
NoseHamiltonian is given by

2
Ts

2Qs

g
pM~p

——+V(qQ)+
2e? (a)

+gkTIns, (1)

N:

whereq andp are thedN dimensional atomic position and
conjugate Nosemomentum vectors, respectively, and the
scalarss and g are auxiliary conjugate position and momen-
tum variables. The Nosdynamics controls the temperature
of the system by rescaling time so that the real tino¢ the
system is related to the Nosine 7 by dt/dr=s. In addi-
tion, the momentunp of the original system is related to the

Nosemomentum byp=p/s.
The equations of motion for this system are

MM 1n/e2
3, =M Tpls?, (23
dB— \'AY% 2b

ds )
E_Q_s' (20
d7ms ~10 1=

F—p M~ *p/s°—gkT/s. (20

The NoseHoover equations of motiofiL5] are generated by
transforming the time derivatives to real time, transforming

to real momentum, and making the coordinate transforma-

tions »=Ins and = 7. These coordinate and time transfor-

equations of motion. The resulting transformed Hamiltonian
is given by

Hnp=S[Hn—Hn(t=0)].

The NosePoincareHamiltonian is nonseparable, since the
kinetic energy contains the extended “position” varialsle
The equations of motion for a general time-independent,
nonseparable Hamiltonian can be writtéar general posi-
tions Q and conjugate momenfd) as

Q=G(P,Q),

) P=F(P,Q), ®3)

where G(P,Q)=dH/dP and F(P,Q)=—dH/dQ. (For a
separable HamiltoniarG is only a function ofP andF is
only a function ofQ.) For such a nonseparable system, stan-
dard symplectic splitting methods, such as the Verlet/
leapfrog algorithm, are not directly applicable. However,
symplectic methods specifically for nonseparable systems
have been developda]. One simple example that is second
order and time reversible is the generalized leapfrog algo-
rithm (GLA)

Pni12=PnthF(Pp.12,Qn)/2,
Qn+1=Qnth[G(Ppn4+1/2,Qn) + G(Ppy1/2,Qns1)1/2,

Pri1=Pny1pt hF(Phi12,Qny1)/2, (4)

whereh is the time step an®, andQ,, are the approxima-
tions toP(t) andQ(t) att=t,=nh. This method is a simple
example of a class of symplectic integrators for nonseparable
Hamiltonians [16—19. Applying the GLA to the Nose
Poincaresystem gives a numerical method that is semiex-
plicit (requiring only one force evaluation per time step
symplectic, and time reversible.

The NosePoincaremethod is showrj5] to provide ca-
nonical sampling by an argument demonstrating that the mi-
crocanonical distribution function in the extended phase
space,

1
pMC(qip!SIWS;N!ViEN):Z_MC5(S[HN(q1pisv7Ts)_ EN])
5

(whereZy, ¢ is the microcanonical partition function obtained
by integratingpy,c over the extended phase spragenerates

a canonical distribution in the reduced phase space. The
proof relies on simply performing the integrations with re-
spect to the auxiliary variables.

IIl. A GENERALIZED EXTENDED NOSE THERMOSTAT

mations destroy the canonical Hamiltonian structure of the In this section, we show that the Noapproach(and its

equations, although there is a conserved energy function.
As an alternative to NosEoover, the Nosdoincareher-
mostat[5], a fully Hamiltonian real-time implementation of

corresponding real-time version—NeBeincarg is only the
simplest realization of a vast range of generalized thermo-
stating Hamiltonians. In particular, we show below that ca-
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nonical sampling can be achieved as well if the NBs&nil-  Integration overs yields
tonian is coupled to an auxiliary systeffwith position
variables{o;} and conjugate momentar;}) to generate a

: el dqdp Ny
generalized Nosélamiltonian dgdpP(p, =—f dAexp{—— H(p,
- qdpP(p,q) KT ZouNI P ng[ (p,a)
Hon=H(q,p/s)+gkTIns+ f(ms {0}, m}), (6)

where H is the Hamiltonian for the original system to be +f(A)_HGN(O)]]- (12
thermostateds and =, are the usual Nosthermostat vari-

ables, and is a continuous function that must be chosen so_ ) ) . .
that it is bounded below and so that exg#f) is in L on its Set_tlngg:Nf_ and integrating over the remaining auxiliary
domain, i.e., so that its absolute integral is finite. The correYariablesA give

sponding real-time generalized NeBeincareHamiltonian

is then

P(p,q)= exd —BH(p,a) ], (13

Honp=S[Hen—Hen(t=0)]. (7 ZgnN!hMN

The proof that this generalized NeB®incaregenerates a . ) )
canonical distributior{assuming ergodicityfollows closely ~Whereg=(kT) " and we have assumed certain properties of

that for the standard NosRoincareapproach5] and is given the functionf(A) to ensure that the integration converges,
here for completeness. The statistical distribution for the reDamely,(1) f is bounded below2) exp(-Bf) L. Applying
duced set of variables2(p,q), is given by an integral over the same procedure sy and canceling constants gives
the extended variable distributioB,,{(p,q,s,A) [where A

denotes the vector of auxiliary variables{,{o},{m})]:

P(p,q)= exp{— BlH(p.a)1}, (14

~ ZN!hNf
dadpPip.)= | dadpdsdAP(p.asA),  (8)

which is the usual canonical distribution, withbeing the

where the integral is over the auxiliary variablesnd A. . " )
standard canonical partition function:

Assuming that the dynamics is ergodic,

1 ~ 1
dqdpP(D,Q)=ZGNN!hNJ dsf dAdpdgd(s[H(p/s,q) 7= N!thJ dpf dgexp{— B[H(p,a)]}. (15)
+gkTIns+f(A)—Hgn0)]), 9)

. . (It should be noted that in the original NeB®incarepaper
W_hereZGNP re_presgants th_e pr_;lrtltlon fun(_:tlon for the gener-rs) 2 method for Nos®oincarechains was outlined; how-
alized NosePoincareHamiltonian andN; is the number of _ever, this method violates the conditions biiven above

degrees of freedom in the thermostated system. Changingq is invalid)

variables to real momenia= p/s gives A useful subclass of generalized Nosemiltonians can
dnd be generated by viewing the standard Nétemiltonian as

dqdpP(p,q) = pdq J dsdAsM S(s[H(p,q) +gkTIns the “system” and the auxiliary variablgo; , 7;} as a “bath”

ZsnNThN giving
+f(A)—=Hen(0)D. (10 ~
, , GN_ Hen=Hn(P,a,S,7ms) + Hparl {0, mi}) + Hin( 7 {07, mi}),
For a functiong(s) with a single pole as=s;,, we have (16)
8(s—5p) . . I
8(p(s))=———, whereH\ is the usual Nosklamiltonian and the system-bath
|¢' (o) interaction HamiltoniarH,,; has no dependence arto pre-
which, for our case, gives serve the canonical distribution, but is otherwise arbitrary
’ ’ (within the constraints ohoutlined abovg This gives us the
dpdg A\ result that a given Hamiltonian system can be thermostated
dqdpP(p,q)=—f dsJ' dA——= by coupling it to any other system, including a copy of itself
ZgnN!hMN gkT For such a broad class of generalized Hamiltonians, it is
1 not possible to give a general numerical discretization

X6

s— exp[ ———[H(p,q) scheme that is optimal for all members of the class, but for
gkT any given specific case, efficient schemes can be devised. In
the following section, we give two specific examples of gen-
+f(A)—HGN(0)]]) : (11)  eralized NosePoincaresystems and outline efficient, sym-
plectic numerical integration algorithms for each.
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IV. ALGORITHMS AND NUMERICAL EXPERIMENTS

In this section, two examples of generalized Nose
Poincarethermostats are presented along with appropriate
symplectic numerical discretization schemes. In addition, nu-
merical experiments are performed to show that these meth-
ods can successfully thermostat a 1D harmonic oscillator.
Note that these are merely intended as representative ex-
amples of the infinite set of possible generalized thermostats

PHYSICAL REVIEW E 68, 016704 (2003

143 022

1
_ 2
50, +22i o?+gkTins|,

and are in no sense being touted as optimal.

A. Example 1: “Vertex” coupling to independent
harmonic oscillators

Consider the following specific generalized Ndg$amil-
tonian:

o3 )

H =M+V(q)+gkﬂns+—
INTTog2 2Q,
ISR (17)
i 2 |1,m2Qi.

We refer to this model as a “vertex” coupling as the are
only coupled to the other variables througfy (a common
verteX. The generalized NosRoincareHamiltonian for this
system is generated in the usual way,

Henp=S[Hen—Hen(t=0)]. (18

(20)

_ M o
H,=s o2 > 20,|" (21)
H3=s[V(q) —Hgnp(t=0)]. (22

This splitting is similar to one proposed by Nosar the
original NosePoincaremethod[7]. The numerical method is
then generated by the concatenation

du(t)= o, (1/2) py (1/2) pyy (1) by, (1/2) Py, (1/2) + o(t3),
(23

whereg(t) is the solution map that advances a phase-space
point forward in time byt under the dynamics defined by the
HamiltonianH. The solution maps foH, and H; can be
performed exactly and that fal, can be approximated us-
ing the GLA discussed in Sec. Il to yield a second-order
method that is both time reversible and symplectic.

B. Example 2: Coupling to a “realistic” system,
the three-soft-particle bath

A standard example of a system that is provably ergodic is

The equations of motion for this example generalizedthe three-ball billiard system consisting of three hard-sphere

NosePoincaresystem are

p=—sVV(q), (199
q=M"1p/s, (19b
S(l-i-z O'iz) T
éz T, (19C)
7=p'M p/s?—gkT—[Hgn—Hen(t=0)], (199
_5T 19
gi= Qi ’ ( 9
mi=—s(1+ 72IQq) 0. (19f)

To generate a symplectic integration scheme, often the
best approach is to use a splitting method in which the
Hamiltonian is written as the sum of simpler Hamiltonians

particles moving in a box with hard boundarig0]. While

we could, in principle, develop numerical schemes for han-
dling a hard-sphere bath, using the technique described in
Ref. [21], this would be quite complicated. Instead, for the
purposes of this demonstration, we use a simplified bath con-
sisting of three soft repulsive spheres constrained to a soft
cubic box. Using the system-bath notation in Ef6), the
bath and interaction Hamiltonians for this system are given

by
2 12 V12 S\ 12
Hpair= 2 |;(g| Z (0'||,x> +(¥ + UI"Z) }
+2 2 |0'i_0'j|_12 (24)
P>
and
3
|773|2
Hint:(izl |0-i|2> ZQS . (25)

for which the equations of motion can be integrated eitheHere the bath positions and momentaand 7, are vectors

exactly or with known simple symplectic schen|&3. The

in R 3 and the second term in E(R4) defines a soft cubic

overall discretization scheme is then given as the concaten&ox of side length. The NosePoincareequations for this
tion of those for the subproblems. For this vertex generalizedystem can be integrated using a similar Hamiltonian split-

NosePoincare the following splitting can be used:

ting to that used in the vertex coupling,
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2 3 12 0.7 T T T T
T o | | T | |
H,=s{ gkTIns+| >, |ai|? ( >+ (J) i I I |
i13 2Qs) =1\ | 06 I i _
i " Il 3Balls : i
o (on r| & Vert 7
+ %) +( I"Z +> > |0'i—0'j|12], _50.5_— Exact : rl _
b = — - Simple NP| i

2T | '

pMp & |m? S04 ' .

H2:S + y o L ! .

28 =1 2Q; &)

g 03 —

Ha=s[V(q) —Hgn(t=0)]. (26) =R ]

Lo2- _

The dynamics foH, andH; can be integrated exactly and A L 4

that for H; can be integrated using the GLA discussed in otk |
Sec. Il .

|
C. Numerical experiments 0 -4 2 0 2 4
We apply the two generalized Ne&wincare Hamilto- q

nians above to the problem of thermostating a 1D harmonic FIG. 1. The probability distribution for the positiapof a har-

oscillqtqr. This system exhibits quite severe deviatior_ls froMyonic oscillator thermostated &= 1.0 by the generalized Nose
.ergodlcny'for the unaugmentgq No'd;termostat@lS],_Whlch Poincarevertex (diamond$ and three-spherécircles couplings

is the main reason for the difficulty encountered in thermo-giscussed in Sec. IV. Specific parameters used for each simulation
stating molecular systems with stiff bonds that are weaklyare given in the text. For comparison, the exact canonical distribu-
coupled to the rest of the systeh0]. The unthermostated tion expected is shown as a solid line and the dotted line represents
Hamiltonian for this system is a simulation using the original Noggoincarethermostat with a
thermostat mass of unity.

H(p,a)= p_2+ q_2
2 2 which the standard Noddoover [9] and NosePoincare

. methods fail to reproduce converged canonical distributions.
where we have assumed unit mass and angular frequenc ” ” ) .
g g y“I'he addition of additional variables to an extended Hamil-

To test the sampling, we have performed molecular- "™ X X ) ) X
dynamics simulations &T=1.0 on this model using both tonian system is much in the spirit of p.revpus,work to im-
the vertex couplingwith Q.=1.0 and 6 auxiliary variables Prove the convergence of the non-Hamiltonian Nbsever
with arbitrarily chosen masse®; equal to 0.7, 1.25, 5.2, thermostat, namely, through the use of the Nesever
10.35, 19, and 29)5and the three-ball couplingwith Qg chaln_s[15] or Ggussmn thermostatin@4], but the methods
=7.0,1=2.5, and all sphere masses set t9.10 Fig. 1, the described in this work are far more general and are fully
results for the distribution af for both couplings in the runs Hamiltonian in form, which allows for the use of symplectic
of 2x 10 steps with a time step=0.01 are shown. The integration schemes, which have been shown to have supe-
solid line in Fig. 1 shows, for comparison, the exact canonifior stability in long simulationg3].
cal distribution for this system at the target temperature and In particular, we demonstrate the remarkable result that,
the dotted line shows the results for the standard "Nosewithin the generalized Nosfrmalism outlined herein, any
Poincaremethod withQ.= 1.0 (with identical time step and Hamiltonian system can be thermostated with any other, in-
run length. Under these conditions, both extended Nose cluding a copy of itself. This gives one an enormous flexibil-
Poincaremethods are seen to adequately generate a canorily in choosing the form of the thermostating bath. For ex-
cal distribution for the harmonic oscillator position variable. ample, one could use as the thermostating bath system a
Similar agreement is obtained for the momentum distribu-collection of coupled oscillators with natural frequencies that
tion. In all cases, the energy error was less thanld 4  mimic those in the system to be thermostated allowing for
with no discernible energy drift. more efficient energy transfer from system to bath. In this
multiresonant Nosapproach, the bath frequencies and cou-
plings could be tuned for optimal performance. In another
approach, one could use as the thermostating system a subset

We have demonstrated that the Ndgge2] and Nose of the full system; for example, one could thermostat a sys-
Poincare[5] methods for constant-temperature molecular-tem of biomolecules in solution with a small sample of water
dynamics simulation can be substantially generalized by that the desired temperature. It is clear that further study is
addition of auxiliary variables to encompass an infinite vari-needed to understand how one constructs an optimal thermo-
ety of Hamiltonian thermostats. Such thermostats can betating bath for a given system. The generalized Nase
used to enhance ergodicity in systems, such as the 1D haproach provides a useful general framework within which
monic oscillator[9] or certain molecular systenjd0], for  such investigations can be undertaken in a systematic way.

V. CONCLUSIONS
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